Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

Advanced Linear Algebra (MA 409)

Problem Sheet - 8

Composition of Linear Transformations and Matrix Multiplication

1. Label the following statements as true or false. In each part, V, W, and Z denote vector spaces with ordered (finite) bases α, β, and γ, respectively; $T: V \rightarrow W$ and $U: W \rightarrow Z$ denote linear transformations; and A and B denote matrices.
(a) $[U T]_{\alpha}^{\gamma}=[T]_{\alpha}^{\beta}[U]_{\beta}^{\gamma}$.
(b) $[T(v)]_{\beta}=[T]_{\alpha}^{\beta}[v]_{\alpha}$ for all $v \in V$.
(c) $[U(w)]_{\beta}=[U]_{\alpha}^{\beta}[w]_{\beta}$ for all $w \in W$.
(d) $\left[I_{V}\right]_{\alpha}=I$.
(e) $\left[T^{2}\right]_{\alpha}^{\beta}=\left([T]_{\alpha}^{\beta}\right)^{2}$.
(f) $A^{2}=I$ implies that $A=I$ or $A=-I$.
(g) $T=L_{A}$ for some matrix A.
(h) $A^{2}=O$ implies that $A=O$, where O denotes the zero matrix.
(i) $L_{A+B}=L_{A}+L_{B}$.
(j) If A is square and $A_{i j}=\delta_{i j}$ for all i and j, then $A=I$.
2. Let $g(x)=3+x$. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ and $U: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformations respectively defined by

$$
T(f(x))=f^{\prime}(x) g(x)+2 f(x) \quad \text { and } \quad U\left(a+b x+c x^{2}\right)=(a+b, c, a-b)
$$

Let β and γ be the standard ordered bases of $P_{2}(\mathbb{R})$ and \mathbb{R}^{3}, respectively.
(a) Compute $[U]_{\beta^{\prime}}^{\gamma}[T]_{\beta}$, and $[U T]_{\beta}^{\gamma}$ directly. Verify that $[U T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\beta}$.
(b) Let $h(x)=3-2 x+x^{2}$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (a) and Theorem 2.14 to verify your result.
3. Let

$$
\begin{gathered}
\alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}, \\
\beta=\left\{1, x, x^{2}\right\}
\end{gathered}
$$

and

$$
\gamma=\{1\} .
$$

Compute the following vectors:
(a) $[T(A)]_{\alpha}$, where $A=\left(\begin{array}{rr}1 & 4 \\ -1 & 6\end{array}\right)$ and $T: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ defined by $T(A)=$ A^{t}.
(b) $[T(f(x))]_{\alpha}$, where $f(x)=4-6 x+3 x^{2}$ and $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T(f(x))=$ $\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right)$
(c) $[T(A)]_{\gamma}$, where $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ and $T: M_{2 \times 2}(F) \rightarrow F$ defined by $T(A)=\operatorname{tr}(A)$.
(d) $[T(f(x))]_{\gamma}$, where $f(x)=6-x+2 x^{2}$ and $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by $T(f(x))=$ $f(2)$.
4. Find linear transformations $U, T: F^{2} \rightarrow F^{2}$ such that $U T=T_{0}$ (the zero transformation) but $T U \neq T_{0}$. Use your answer to find matrices A and B such that $A B=O$ but $B A \neq O$.
5. Let A be an $n \times n$ matrix. Prove that A is a diagonal matrix if and only if $A_{i j}=\delta_{i j} A_{i j}$ for all i and j.
6. Let V be a vector space, and let $T: V \rightarrow V$ be linear. Prove that $T^{2}=T_{0}$ (the zero operator) if and only if $R(T) \subseteq N(T)$.
7. Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear.
(a) Prove that if $U T$ is one-to-one, then T is one-to-one. Must U also be one-to-one?
(b) Prove that if $U T$ is onto, then U is onto. Must T also be onto?
(c) Prove that if U and T are one-to-one and onto, then $U T$ is also.
8. Let A and B be $n \times n$ matrices. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$.
9. (a) Suppose that z is a (column) vector in F^{p}. Prove that $B z$ is a linear combination of the columns of B. In particular, if $z=\left(a_{1}, a_{2}, \ldots, a_{p}\right)^{t}$, then show that

$$
B z=\sum_{j=1}^{p} a_{j} v_{j}
$$

(b) Extend (a) to prove that column j of $A B$ is a linear combination of the columns of A with the coefficients in the linear combination being the entries of column j of B.
(c) For any row vector $w \in F^{m}$, prove that $w A$ is a linear combination of the rows of A with the coefficients in the linear combination being the coordinates of w. Hint: Use properties of the transpose operation applied to (a).
(d) Prove the analogous result to (b) about rows: Row i of $A B$ is a linear combination of the rows of B with the coefficients in the linear combination being the entries of row i of A.
10. Let M and A be matrices for which the product matrix $M A$ is defined. If the j th column of A is a linear combination of a set of columns of A, prove that the j th column of $M A$ is a linear combination of the corresponding columns of $M A$ with the same corresponding coefficients.
11. Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be linear.
(a) If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $R(T) \cap N(T)=\{0\}$. Deduce that $V=R(T) \oplus$ $N(T)$.
(b) Prove that $V=R\left(T^{k}\right) \oplus N\left(T^{k}\right)$ for some positive integer k.
12. Let V be a vector space. Determine all linear transformations $T: V \rightarrow V$ such that $T=T^{2}$. Hint: Note that $x=T(x)+(x-T(x))$ for every x in V, and show that $V=\{y: T(y)=$ $y\} \oplus N(T)$.
13. Using only the definition of matrix multiplication, prove that multiplication of matrices is associative.
14. For an incidence matrix A with related matrix B defined by $B_{i j}=1$ if i is related to j and j is related to i, and $B_{i j}=0$ otherwise, prove that i belongs to a clique if and only if $\left(B^{3}\right)_{i i}>0$.
15. Use the above exercise to determine the cliques in the relations corresponding to the following incidence matrices.
(a) $\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right) \quad$ (b) $\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
16. Let A be an incidence matrix that is associated with a dominance relation. Prove that the matrix $A+A^{2}$ has a row [column] in which each entry is positive except for the diagonal entry.
17. Prove that the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

corresponds to a dominance relation. Use the above exercise to determine which persons dominate [are dominated by] each of the others within two stages.
18. Let A be an $n \times n$ incidence matrix that corresponds to a dominance relation. Determine the number of nonzero entries of A.

